44 research outputs found

    A Star in the Brainstem Reveals the First Step of Cortical Magnification

    Get PDF
    A fundamental question in the neurosciences is how central nervous system (CNS) space is allocated to different sensory inputs. Yet it is difficult to measure innervation density and corresponding representational areas in the CNS of most species. These measurements can be made in star-nosed moles (Condylura cristata) because the cortical representation of nasal rays is visible in flattened sections and afferents from each ray can be counted. Here we used electrophysiological recordings combined with sections of the brainstem to identify a large, visible star representation in the principal sensory nucleus (PrV). PrV was greatly expanded and bulged out of the brainstem rostrally to partially invade the trigeminal nerve. The star representation was a distinct PrV subnucleus containing 11 modules, each representing one of the nasal rays. The 11 PrV ray representations were reconstructed to obtain volumes and the largest module corresponded to ray 11, the mole's tactile fovea. These measures were compared to fiber counts and primary cortical areas from a previous investigation. PrV ray volumes were closely correlated with the number of afferents from each ray, but afferents from the behaviorally most important, 11th ray were preferentially over-represented. This over-representation at the brainstem level was much less than at the cortical level. Our results indicate that PrV provides the first step in magnifying CNS representations of important afferents, but additional magnification occurs at higher levels. The early development of the 11th, foveal appendage could provide a mechanism for the most important afferents to capture the most CNS space

    Characteristics of dust event in East Asia : Focus on the Gobi Desert, and Mongolia regions

    Get PDF
    [ABSTRACT] This study investigated the effect of snow and vegetation covers on dust emission by the correlation analysis of strong wind frequency and dust emission frequency, where the strong wind is defined with a constant threshold 6.5 m/sec. This correlation should be high (low) where the variance of land surface environment is low (large). In addition to this idea, referring to the parameterizations of threshold wind speed by NDVI and snow cover fraction, we built four hypotheses as shown in section 3.1. However, our obtained results disagreed with these in many points, and this indicates problems in the current parameterizations. We will discuss the reasons of these disagreements and some methods will be proposed to clarify these problems

    Cellular Scaling Rules of Insectivore Brains

    Get PDF
    Insectivores represent extremes in mammalian body size and brain size, retaining various “primitive” morphological characteristics, and some species of Insectivora are thought to share similarities with small-bodied ancestral eutherians. This raises the possibility that insectivore brains differ from other taxa, including rodents and primates, in cellular scaling properties. Here we examine the cellular scaling rules for insectivore brains and demonstrate that insectivore scaling rules overlap somewhat with those for rodents and primates such that the insectivore cortex shares scaling rules with rodents (increasing faster in size than in numbers of neurons), but the insectivore cerebellum shares scaling rules with primates (increasing isometrically). Brain structures pooled as “remaining areas” appear to scale similarly across all three mammalian orders with respect to numbers of neurons, and the numbers of non-neurons appear to scale similarly across all brain structures for all three orders. Therefore, common scaling rules exist, to different extents, between insectivore, rodent, and primate brain regions, and it is hypothesized that insectivores represent the common aspects of each order. The olfactory bulbs of insectivores, however, offer a noteworthy exception in that neuronal density increases linearly with increasing structure mass. This implies that the average neuronal cell size decreases with increasing olfactory bulb mass in order to accommodate greater neuronal density, and represents the first documentation of a brain structure gaining neurons at a greater rate than mass. This might allow insectivore brains to concentrate more neurons within the olfactory bulbs without a prohibitively large and metabolically costly increase in structure mass

    Molecular basis of a novel adaptation to hypoxic-hypercapnia in a strictly fossorial mole

    Get PDF
    Background: Elevated blood O2 affinity enhances survival at low O2 pressures, and is perhaps the best known and most broadly accepted evolutionary adjustment of terrestrial vertebrates to environmental hypoxia. This phenotype arises by increasing the intrinsic O2 affinity of the hemoglobin (Hb) molecule, by decreasing the intracellular concentration of allosteric effectors (e.g., 2,3-diphosphoglycerate; DPG), or by suppressing the sensitivity of Hb to these physiological cofactors. Results: Here we report that strictly fossorial eastern moles (Scalopus aquaticus) have evolved a low O2 affinity, DPG-insensitive Hb - contrary to expectations for a mammalian species that is adapted to the chronic hypoxia and hypercapnia of subterranean burrow systems. Molecular modelling indicates that this functional shift is principally attributable to a single charge altering amino acid substitution in the β-type δ-globin chain (δ136Gly→Glu) of this species that perturbs electrostatic interactions between the dimer subunits via formation of an intra-chain salt-bridge with δ82Lys. However, this replacement also abolishes key binding sites for the red blood cell effectors Cl-, lactate and DPG (the latter of which is virtually absent from the red cells of this species) at δ82Lys, thereby markedly reducing competition for carbamate formation (CO2 binding) at the δ-chain N-termini. Conclusions: We propose this Hb phenotype illustrates a novel mechanism for adaptively elevating the CO2 carrying capacity of eastern mole blood during burst tunnelling activities associated with subterranean habitation

    Molecular basis of a novel adaptation to hypoxic-hypercapnia in a strictly fossorial mole

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elevated blood O<sub>2 </sub>affinity enhances survival at low O<sub>2 </sub>pressures, and is perhaps the best known and most broadly accepted evolutionary adjustment of terrestrial vertebrates to environmental hypoxia. This phenotype arises by increasing the intrinsic O<sub>2 </sub>affinity of the hemoglobin (Hb) molecule, by decreasing the intracellular concentration of allosteric effectors (e.g., 2,3-diphosphoglycerate; DPG), or by suppressing the sensitivity of Hb to these physiological cofactors.</p> <p>Results</p> <p>Here we report that strictly fossorial eastern moles (<it>Scalopus aquaticus</it>) have evolved a low O<sub>2 </sub>affinity, DPG-insensitive Hb - contrary to expectations for a mammalian species that is adapted to the chronic hypoxia and hypercapnia of subterranean burrow systems. Molecular modelling indicates that this functional shift is principally attributable to a single charge altering amino acid substitution in the β-type δ-globin chain (δ136Gly→Glu) of this species that perturbs electrostatic interactions between the dimer subunits via formation of an intra-chain salt-bridge with δ82Lys. However, this replacement also abolishes key binding sites for the red blood cell effectors Cl<sup>-</sup>, lactate and DPG (the latter of which is virtually absent from the red cells of this species) at δ82Lys, thereby markedly reducing competition for carbamate formation (CO<sub>2 </sub>binding) at the δ-chain N-termini.</p> <p>Conclusions</p> <p>We propose this Hb phenotype illustrates a novel mechanism for adaptively elevating the CO<sub>2 </sub>carrying capacity of eastern mole blood during burst tunnelling activities associated with subterranean habitation.</p

    Heterochrony and developmental modularity of cranial osteogenesis in lipotyphlan mammals

    Get PDF
    Background Here we provide the most comprehensive study to date on the cranial ossification sequence in Lipotyphla, the group which includes shrews, moles and hedgehogs. This unique group, which encapsulates diverse ecological modes, such as terrestrial, subterranean, and aquatic lifestyles, is used to examine the evolutionary lability of cranial osteogenesis and to investigate the modularity of development. Results An acceleration of developmental timing of the vomeronasal complex has occurred in the common ancestor of moles. However, ossification of the nasal bone has shifted late in the more terrestrial shrew mole. Among the lipotyphlans, sequence heterochrony shows no significant association with modules derived from developmental origins (that is, neural crest cells vs. mesoderm derived parts) or with those derived from ossification modes (that is, dermal vs. endochondral ossification). Conclusions The drastic acceleration of vomeronasal development in moles is most likely coupled with the increased importance of the rostrum for digging and its use as a specialized tactile surface, both fossorial adaptations. The late development of the nasal in shrew moles, a condition also displayed by hedgehogs and shrews, is suggested to be the result of an ecological reversal to terrestrial lifestyle and reduced functional importance of the rostrum. As an overall pattern in lipotyphlans, our results reject the hypothesis that ossification sequence heterochrony occurs in modular fashion when considering the developmental patterns of the skull. We suggest that shifts in the cranial ossification sequence are not evolutionarily constrained by developmental origins or mode of ossification

    Born Knowing: Tentacled Snakes Innately Predict Future Prey Behavior

    Get PDF
    Background: Aquatic tentacled snakes (Erpeton tentaculatus) can take advantage of their prey’s escape response by startling fish with their body before striking. The feint usually startles fish toward the snake’s approaching jaws. But when fish are oriented at a right angle to the jaws, the C-start escape response translates fish parallel to the snake’s head. To exploit this latter response, snakes must predict the future location of the fish. Adult snakes can make this prediction. Is it learned, or are tentacled snakes born able to predict future fish behavior? Methods and Findings: Laboratory-born, naïve snakes were investigated as they struck at fish. Trials were recorded at 250 or 500 frames per second. To prevent learning, snakes were placed in a water container with a clear transparency sheet or glass bottom. The chamber was placed over a channel in a separate aquarium with fish below. Thus snakes could see and strike at fish, without contact. The snake’s body feint elicited C-starts in the fish below the transparency sheet, allowing strike accuracy to be quantified in relationship to the C-starts. When fish were oriented at a right angle to the jaws, naïve snakes biased their strikes to the future location of the escaping fish’s head, such that the snake’s jaws and the fish’s translating head usually converged. Several different types of predictive strikes were observed. Conclusions: The results show that some predators have adapted their nervous systems to directly compensate for the future behavior of prey in a sensory realm that usually requires learning. Instead of behavior selected during their lifetime

    Worm Grunting, Fiddling, and Charming—Humans Unknowingly Mimic a Predator to Harvest Bait

    Get PDF
    Background: For generations many families in and around Florida’s Apalachicola National Forest have supported themselves by collecting the large endemic earthworms (Diplocardia mississippiensis). This is accomplished by vibrating a wooden stake driven into the soil, a practice called ‘‘worm grunting’’. In response to the vibrations, worms emerge to the surface where thousands can be gathered in a few hours. Why do these earthworms suddenly exit their burrows in response to vibrations, exposing themselves to predation? Principal Findings: Here it is shown that a population of eastern American moles (Scalopus aquaticus) inhabits the area where worms are collected and that earthworms have a pronounced escape response from moles consisting of rapidly exiting their burrows to flee across the soil surface. Recordings of vibrations generated by bait collectors and moles suggest that ‘‘worm grunters’ ’ unknowingly mimic digging moles. An alternative possibility, that worms interpret vibrations as rain and surface to avoid drowning is not supported. Conclusions: Previous investigations have revealed that both wood turtles and herring gulls vibrate the ground to elicit earthworm escapes, indicating that a range of predators may exploit the predator-prey relationship between earthworms and moles. In addition to revealing a novel escape response that may be widespread among soil fauna, the results sho
    corecore